Microstructure and Wear Behavior of NbC-Reinforced Ni-Based Alloy Composite Coatings by Laser Cladding

نویسندگان

چکیده

This work aims to evaluate the influence of laser power and reinforcement feeding rate on microstructure, hardness, wear behavior NbC-reinforced Hastelloy C276TM alloy composite coatings. From a dual system, one-step metal-matrix coatings were deposited with 10, 30, 50% mass NbC powder powers 1.5 3.0 kW. Coatings kW 30% showed some degree porosity due combination melting pool temperature. Laser altered efficiency substrate burn-in shape, remarkably influencing dilution. The microstructure was comprised Ni-? (FCC) dendrites interdendritic network carbide which, in turn, ranged from lamellar-like M6C blocky-like conjugated MC-M23C6 carbide. Primary petaloid-like MC [Nb] formed on, whilst considerable number unmelted particles observed for 50%. higher rate, fraction better performance low heat-input specimens. Synthesis high sheds light deleterious effect dilution is not an option enhance performance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure, Wear Resistance and Oxidation Behavior of Ni-Ti-Si Coatings Fabricated on Ti6Al4V by Laser Cladding

The Ni-Ti-Si composite coatings were successfully fabricated on Ti6Al4V by laser cladding. The microstructure were studied by SEM (scanning electron microscopy) and EDS (energy dispersive spectrometer). It has been found that Ti₂Ni and Ti₅Si₃ phases exist in all coatings, and some samples have TiSi₂ phases. Moreover, due to the existence of these phases, coatings presented relatively higher mic...

متن کامل

Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding

Ni-based alloy powders with different contents of cobalt (Co) have been deposited on a 42CrMo steel substrate surface using a fiber laser. The effects of Co content on the microstructure, composition, hardness, and wear properties of the claddings were studied by scanning electron microscopy (SEM), an electron probe microanalyzer (EPMA), X-ray diffraction (XRD), a hardness tester, and a wear te...

متن کامل

Effect of CeO2 on Microstructure and Wear Resistance of TiC Bioinert Coatings on Ti6Al4V Alloy by Laser Cladding

To solve the lack of wear resistance of titanium alloys for use in biological applications, various prepared coatings on titanium alloys are often used as wear-resistant materials. In this paper, TiC bioinert coatings were fabricated on Ti6Al4V by laser cladding using mixed TiC and ZrO₂ powders as the basic pre-placed materials. A certain amount of CeO₂ powder was also added to the pre-placed p...

متن کامل

Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition.

Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- ...

متن کامل

Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding

Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials Research-ibero-american Journal of Materials

سال: 2021

ISSN: ['1980-5373', '1516-1439']

DOI: https://doi.org/10.1590/1980-5373-mr-2020-0447